DIRAC EQUATION IN (1+3)- AND (2+2)-DIMENSIONS

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dirac semimetal in three dimensions.

We show that the pseudorelativistic physics of graphene near the Fermi level can be extended to three dimensional (3D) materials. Unlike in phase transitions from inversion symmetric topological to normal insulators, we show that particular space groups also allow 3D Dirac points as symmetry protected degeneracies. We provide criteria necessary to identify these groups and, as an example, prese...

متن کامل

The symmetries of the Dirac – Pauli equation in two and three dimensions

We calculate all symmetries of the Dirac-Pauli equation in twodimensional and three-dimensional Euclidean space. Further, we use our results for an investigation of the issue of zero mode degeneracy. email: [email protected] email: [email protected]

متن کامل

The Dirac Equation in Two Dimensions: Dispersive Estimates and Classification of Threshold Obstructions

We investigate dispersive estimates for the two dimensional Dirac equation with a potential. In particular, we show that the Dirac evolution satisfies a t−1 decay rate as an operator from the Hardy space H to BMO, the space of functions of bounded mean oscillation. This estimate, along with the L conservation law allows one to deduce a family of Strichartz estimates. We classify the structure o...

متن کامل

Dirac and Weyl superconductors in three dimensions.

We introduce the concept of three-dimensional Dirac (Weyl) superconductors (SC), which have protected bulk fourfold (twofold) nodal points and surface Majorana arcs at zero energy. We provide a sufficient criterion for realizing them in centrosymmetric SCs with odd-parity pairing and mirror symmetry. Pairs of Dirac nodes appear in a mirror-invariant plane when the mirror winding number is nontr...

متن کامل

Spinors and the Dirac Equation

The Dirac equation can be derived using the relativistic relation between mass and energy E = m (normalized units) and the symmetries of the universe, so it is necessary to have a firm grasp on the latter. The relativistic symmetry group is the orthochronous Poincare group SO(1, 3) n R, though we shall mainly use just the orthochronous Lorentz group SO(1, 3). Its Lie algebra is so(1, 3). We fir...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: International Journal of Modern Physics A

سال: 2013

ISSN: 0217-751X,1793-656X

DOI: 10.1142/s0217751x13501145